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On the Parallel Dynamics for the
Little—Hopfield Model

A. E. Patrick! and V. A. Zagrebnov'
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We propose a method (algorithm) for calculation of the explicit formulas for
evolution of the main and the residual overlaps. It allows us to confirm the
Gardner—Derrida~Mottishaw second-step formula for the main overlap and to
go beyond to the next steps. We discuss the dynamical status of the Amit—
Gutfreund-Sompolinsky formula for the main overlap and some computer-
simulation results.
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1. INTRODUCTION

Let (2, %,P) be a probability space of infinite Bernoulli sequences
{¢i}72,=8 Here Q= {—1,1}®, & is the minimal s-algebra containing all
Borel subsets Z(R*) n 2, and P is a product measure defined on the cylin-
der sets C< # by

P{C, ={8eF: & =ay,., &, =a,} ) =nZin0+aV2(| )Tt -a2 (4 1)

where probability n=P{§e %:¢{,=1} for arbitrary j= 1, 2,.... Therefore,
€ is the space of realizations of dichotomous 1ndependent identically
distributed random variables (i.i.d.r.v.).

Let us consider M realizations (trials) of the above Bernoulli

sequences of the length N, i, {E5}) = {£7}MY | (patterns). Then the
Little-Hopfield model"*’ of the neural network with N neurons and M
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stored uncorrected patterns corresponds to the quenched random Ising
model

N
Hy(S)=— Z Jg”S,-Sj, S={Si}f.v:1 (1.2)
en

where the interaction has the Hebbian form!»?
1 M
Jp== 3 &rer (1.3)
if Np:l J

with 7= 1/2.

Whenever M is not very large, e.g., M=o N with a small enough a,
the ground-state energy H,(S) has at least 2M sound minima separated by
barriers of heights ~O(XN). As has been rigorously proven by Newman,®’
there is @, >0 such that for a random system of patterns {§} | the
above picture persists for ¢ < &, in the limit N — oo (¢-lim) in the sense that
the probability of this event converges in this limit to 1.

The aim of the present paper is to add a new result for this model
concerning the exact recurrence equations for the parallel dynamics. Here
we follow a probabilistic approach to the Littie-Hopfield model proposed
in ref. 4 and developed in ref. 5. For the multilayered perceptron (Domany—
Meir-Kinzel model®) this approach gives!”’ exact results for the dynamics
of the main and the residual overlaps; see also the recent paper by Domany
et al.®

We recall that (for zero temperature 6 =0) the parallel dynamics for
the model (1.2), (1.3) corresponds to simultaneous updating the spin
configuration S at the moment ¢+ 1 according to the rule

N
Si(t—!—l):sign( Y J?S,(t)), i=1,2,.,N (1.4)
(o
The simplest way to take into account nonzero temperature 80 is to
switch on in (1.4) noisy terms {¢,} 2, which are ii.d.r.v. with distributions

1
F¢,(x)=Pr{¢i<x}=E|:1+th <g>} i=1,2,. (1.5)
so that one gets, instead of (1.4), the following stochastic equations:
N
St + 1):sign< > J§‘Sj(t)+¢,->, i=1,2,. (1.6)
j=1

U=



Parallel Dynamics for Little-Hopfield Model 61

In the next three sections we present formulas describing the first three
steps of evolution. Finally, we discuss the status of the Amit-Gudfreund—
Sompolinsky (AGS) formula® for the main overlap at 1 = co. We propose
a derivation of this formula based on pure dynamical (instead of
thermodynamic®®’) ideas.

2. THE FIRST STEP: KINZEL FORMULA AND THE RESIDUAL
OVERLAPS

Let {€7} ), be a set of the fixed random patterns (quenched system)
realized on the space (2, #, P). Consider the space @ =[], Q with
corresponding g-algebra #* and product measure P, Then the above
patterns are P*-almost surely (a.s.) stochastically independent:

éfff’% 0, p#p @1

. 1
(€78 )N_]_\_[

!IMz

Let the initial configuration S{z=0) be such that

1 m#(0) #0, r=q

mi(1=0)== (8(0)-&)y=1 .., (22)
—N_)—;;"‘* 0, p(#q):l, 2,..., M

Then, by means of (1.4), the main overlap m9(-) at t =1 can be represented

as

m"N(tzl):%f Y sign [mj{,,i(t=0)+é?\/lﬁ p2=:1 f{’r,’(,v,.(t=0)] (2.3)
(p#¢q)

where {r”(-)},,, denotes the residual (noisy) overlaps, i.e.,

1 N
rv(t=0)=—= Z ¢rS,(t=0) (24)
\/N(jj?n

The additional subindex 7 in (2.3), (2.4) means that the corresponding
terms in the sums (2.2), (2.4) are canceled,

mi, (- )——(é" =— Z s
N2
To establish the dynamics of the main overlap, we have to calculate
(2.3) in the o-lim for a quenched system of random patterns. Below we show
that the result is a.s. (with respect to the measure P®) independent of this
system.
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Therefore, for the first step one has to prove that for an arbitrary fixed
set of random patterns the noisy terms {&7-v4 ,(r=0)}Y ,, where

fri. (1=0) (2.5)

1 M
0%, (1=0)=—= ) &
N \/ijl
(p#4q)

converge to a sequence of iid.r.v. This would allow us to apply to (2.3) the
law of large numbers (in the series scheme®):

a-lim m4, (¢t = 1) = E,, sign(m?(: =0) + y,(t =0)) (2.6)

where E.(-) is the expectation over the stationary noise #,(t=0)=
¢lv?(1=0).

To this end, let us remark that according to the initial conditions, one
gets that

(7S, (1=0) 12N s =1 = 10
is a matrix of iid.r.v. in Q*. Hence, by the central limit theorem (CLT)
(ref. 10, IT1.§6) one gets (in the sense of distribution) that

Anas — E2
o-lim (%M—M—;Vl—/‘; 4 #(0,1) (2.7)

Here

N M
j=1 p=

J#D (p#q)
and A47(0,1) is a Gaussian random variable with mean zero and unit
variance. Calculating the expectation and variance in {2.7) and taking into

account definition (2.5), we get

oclim v, ,(1=0) = /o #7(0, 1) (2.8)

Then by the symmetry of the distribution A47(0, 1) and the independence
of ¢4 and v ,(r=0) we obtain the same for {n:(t=0)},, which are
by construction iid.r.v., and ni(t=0)=\/&JV(0, 1). Consequently [see
(2.6)], one getsV

mi(t= 1)=erf<mq(—t\/—:;—ol>

erf(z) = (%)1/2 fo dx exp (_2x2>

(2.9)
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To perform the next step t=2 one can use the same line of reasoning
as above, but now with distribution of #,(¢t = 1). Therefore [see (2.5)], we

have to calculate «-lim for residual overlaps {r*(r=1)},.,. Using (1.4),
one gets the following recurrence relations:
r (1= 1)=—1—— i sign [—1—— r (1=0)+ ff(é?mj’v (t=0)
Nizl \/_]\_7 i i i i
1 M
= ) ifrz’é,,-(t=0)>} f(#q)=1,2,., M (2.10)
\/Xf r=1
(p#/4q)

Let us introduce random variables

M
W=0)=Eml (=00t —= 5 Efrg(i=0)  C11)
N 2
(p#/.q)
Warning. Random variables (1/\/N)r{, (t=0) and &/w}?(1=0)
are independent for i = j, but they are correlated for i # j,
eg, (1//N)r is correlated with E{¢¢mY, ,(t=0). So,
{(l/ﬁ)r t—0)+£fw 9r=0)}~, is the sequence of dependent
random varlables Compare this with the case of the multilayered
perceptron,”’ where they are still independent.
From Egs. (2.2) and (2.4) by the CLT one gets

r(t=0)=o-lim r{ ,(t=0)=o-lim r{%(r=0) L 40,1), f#q (212)

To derive the recurrence relation for {r”(t=1)},,,, one has to fix the
realization of residual overlaps at t=0 and to consider the noise from
choices of the patterns.

Applying the CLT to the inon-idrv. {&7r§ (¢e=0)}2L, ..
[according to (2.12), {r% ,(r=0)}, is a fixed Gaussian realization; see
(2.10)], we obtain

. 1 M
a-hm—N Y EnL(1=0)= Ja N (0, 1) (2.13)
Gt
which is dependent on {r”(+=0)}, but independent of {§”}. Therefore, by
(2.11), {w;’(t=0)=d=oc-lim wiP(r=0)}7, is a sequence of iid.rv. with
probability density

[x—omi(t= O)]z}

1
P0=3 T e, (2.14)

822/63/1-2-5
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By symmetry of (2.14) and independence of &7 and w?(z=0) we get the
same distribution for {&9w(1=0)}7 : pa(x)= p%(x).

Now we can to apply the CLT (together with the Berry—Esseen
theorem, ref. 10, IIL. §6, to control the uniformity) to the sequence

1 .
sign 87, = sign l:—rf i(t=0)+é,fwf"’,(t=0)]}
it -0

to get
. 2N signély~ESN signéd, a
-1 - b == 0,1 2.
i (Var 377, sign 67 )" A0, 1) (215
Using (2.14) and p;,(x)= p2(x), one gets
a-lim /N E sign 6/ y=2p)(x=0)r/(1=0) (2.16)

Then we get that
N

1
a-lim ﬁVar Y signéf =1

i=1
and finally by Egs. (2.15) and (2.16) one obtains
Ht=1)=4(0,1)+2p°%x=0)-r(t=0), [f#q (2.17)
Therefore, the limit residual overlaps at the moment =1 are the sum of
two correlated [see (2.12) and the warning following (2.11)] Gaussian
variables.

Using Egs. (1.4), (2.2) and Egs. (2.8), (2.9), one can show'*’ that a-lim
E(S(t=1)-5,(t=0))=mi(t=1) m?(t=0). Hence, the covariance is

Cov[r/(t=1)-P(t=0)]1=m(t=1)m(t=0)+2p°(x=0) (2.18)

and, as a consequence, we get for the variance of (2.17)
D(t=1)=Var/(t=1)=1+(2p%(x=0))+4p2(x =0) m?(t = 1) m(t = 0)
(2.19)

So, we are ready to do the second step.

3. THE SECOND STEP: GARDNER-DERRIDA-MOTTISHAW
FORMULA AND THE RESIDUAL OVERLAPS

As above, we start with representation [cf. (2.3)]

N(t-2)=-!—231gn(:m‘,’\,!(t—1 +£"\/__ Z 1)} (3.1)

(;)
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To apply the CLT to {&%v%, (r=1)=n% (r=1)}_, [cf (2.5) and (2.6)],

we first have to consider the convergence of {v% ,(r=1)} . To this end,

we can apply (for a fixed realization of S;(r=0)) the CLT to iid.r.v.

{&F-rf (t=1)},,,; then

vd, (t=1)~Ev% (t=1) 4
: L L .
[Var vj’v‘,-(l=1)]1/2 (0, 1) (32)

o-lim

On the other hand, according (2.10) and Egs. (2.11) and (2.14), one gets
[see (2.2), (2.17), and (2.19)]

a-lim Ev§, (t=1)=S,(1=0)20- p2(x=0) (3.3)
and Var v§ (t=1)=aD(t= 1)+ o(a). Therefore, with the help of (3.2) and
(3.3), Eq. (3.1) can be represented in the following form:

1 N
mj’v(t=2)=N Y sign{mi(r=1)+ [aD(t=1)]"¢.47(0, 1)
i=1

+ 200 pY(x=0)E78,(t=0)} + o(1) (3.4)

Let {i=1,2,.,N}=I1,0l_, where I, ={i:{?-S(t=0)= +1}. Then
from (3.4) we get, by the ergodic theorem for 7, and #¢(r=1), that in the
a-lim
mi(t=2)=olim 3
g=+1

+ [aD(t=1)1"2 H(0, 1) + 20 pi(x =0)c}

or finally (Gardner-Derrida-Mottishaw formula''?)

1+om?(t=0) mi(t=1)+ 2aap’(x=0)
e T 69

mi(t=2)= Y

o= *1

Here p2(x) and D(1=1) are defined by (2.14) and (2.19).

Now it is clear that to go beyond this formula to the next step one has
first to calculate residual overlaps for 1= 2.

Starting from the explicit formula (2.10) for =2 and the representa-
tion of the noisy term n%%(z= 1) as we obtain above, one gets

, 1 X 1
St = —__ 3 —_ — £f £ —
rl(t=2)= Y mgn[ =1+ 8 Emir=1)
\/" \/N ‘

=1
+[aD(1= )] E (0, 1)+ 2ap(x = 0) &/ S,»(z=0)}

+o(1) (3.6)
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Let, for o, , = +1,
Aoy, 05)=o,m(1=1)+0,20p° (x =0) (3.7)

Then, following the line of reasoning presented above [see (2.11)-(2.14)
including the warning following (2.11)], we obtain for the probability
density of the noisy terms {&/wé(r=1)}® | that [cf. (2.14)]

_ (x—A(ay, 02))2}

Lo v
px)= % Pl("““”[2mD(z=1)]”2€xP{ 20D(1=1)

agp2= 1
(3.8)
Here (f#q)
Py(01, 03) = Pria, = £1E%; 0y = E1S, (1= 0)} = L0 =0) )

4

Using (3.8) and the same arguments as above [see Egs. (2.15)-(2.17)], we
get from (3.6) that the residual overlap a-lim r{(r=2) again is the sum of
two correlated Gaussian variables [cf. (2.17)]

Fi=2)=H(0, )+ 2 (x=0)r(t=1), f+#q (3.10)

By reasoning similar to the above [cf. (2.18)], but a bit lengthier
calculation, one gets (see also ref. 5)

Cov[ (0, 1) -+ (t=1)]
=mi(t=2)mi(t=1)

1 —(m(t=0))*

+2p%(x=0) [m"(t=0)m"(l=2)+ 2

m(t =1} + 2aap(x = 0)
X Y aerf( D= )] )] (3.11)

o= *1

Equations (3.10) and (3.11) give the explicit formula for the variance of the
random Gaussian residual overlaps at t=2 [cf. (2.19)]:

D(t=2)=1+(2pL(x=0))? D(1=1)+4p.(x=0) Cov[ (0, 1) - r/(1=1)]
(3.12)

4. THE THIRD STEP

We again have to repeat the analysis of the random variable
a-lim v%, (t) structure [see (2.5) and Eqs. (2.3), (3.1)], but now for r=2.
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The same procedure as above [cf. (3.2), (3.3)] gives a new deviation from
Gaussian random variable [aD(t=2)]"2.47(0, 1) due to correlations:
pi(r=2) = [2D(1=2)]"2H(0, 1) + 20p’.(x =0)
[Si(t=1)+2p)(x=0) S;(t=0)] (4.1)

Compare Egs. (2.8), (3.4), and (4.1). Then the probability density A{x) for
the noisy term o-lim 5%, ,(1=2) [see (3.1) and (3.4)] takes the form

1 (x—glo,, 35))?
h(x)= % dﬁﬂz)mexp[—m] (4.2)

o= =x1
where
oy, 0,)=Pr(liS(t=1)=0;8!S(t=0)=0,)

_l+om(t=1) 1+a,m(t=0)
- 2 2

(4.3)

gloy,05)=2ap. (x=0)[0,+0,-20%(x=0)]

Using the representation (3.1) for t=3 and Egs. (4.1)-(4.3), we get
[cf. (3.5)]

mi(t=3)= Y c(oy, oz)erf[
o12= %1
Where D(t=2) is defined by (3.12).

In ref. 5 we formulate a conjecture about a possible structure of the
formula for the main overlap m?(¢t=nr) for arbitrary n which gave us no
hint about ¢ — co. That is why instead we consider the status of the AGS
formula® for the main overlap m“.

This formula has been derived by the methods of equilibrium
statistical mechanics. Therefore, it is reasonable to consider that
m?=m(t=c0).

(4.4)

mi(t=2)+ g(o,, 05)
[aD(1=2)]" ]

5. AMIT-GUTFREUND-SOMPOLINSKY FORMULA

Let m?=m. Then we call the system of coupled equations

N . (5.1)
m

V2 -

R 1+ (na) exp ( ZocR)
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the AGS formula.®” As mentioned above, this formula for the main overlap
describes the final stage of evolution (#=o0). Since for parallel dynamics
(which we consider throughout this paper) the evolution for 1= oo does
not stop at the fixed configuration,!® we can try to apply our observations
about the dynamics of the main and the residual overlaps for this stage.

It is clear that under the parallel dynamics (1.4) at 1= oo the system
performs a random walk on some set A(£7) in the vicinity of the pattern
£9. This evolution is created by the internal noise due to the nonzero
residual overlaps. It is very reasonable to suppose that at this stage we
have:

1. m?(t+1)=mé (¢)—stationarity of the main overlap.

2. rZ(t+1)=rZ (t)—strong stationarity of the internal noise ( p # g).
Moreover, as follows from Egs. (2.4), (2.7), and (3.10), the residual
overlaps for any ¢ are Gaussian random variables with zero mean and with
the variance independent of p (#¢q).

3. r2(n)=A4(0,D), p=1,2, .., and they are Lidr.v.

Let S(¢)e A(E7). Then, to calculate the next step S(z+ 1), we can use
condition 3 and our first-step formulas (2.9), (2.17):

a m?. (1)
mi_(t+ 1)=Crf<(—am> (5.2)
2 \12 q 2
re(t+1)=47(0,1)+ (E—oﬁ) exp {— ———[mzz(lt))] }.r{;(z) (5.3)
Therefore, from condition 1 and Eq. (5.2) one gets
¢ (0 g {1500
mi (t)y=erf ((aD)1/2> (5.4)

Using (2.18) and (3.11), it is hard to predict how the correlation between
A(0,1) and 7/(¢) increases. But from condition 2 and Eq. (5.3) one gets
that A47(0, 1) and r/_(¢) have to be linearly correlated. Hence A4°(0, 1) =

rﬁo(t)/\/ﬁ. Then, calculating the variance D defined by condition and
Eq. (5.3), we obtain that

JD=1 +(%>l/ exp {L%—%)i} (5.5)

For m? (t)=m and D=R, Egs. (5.4) and (5.5) coincide with the
system of AGS equations (5.1).
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6. CONCLUDING REMARKS

For nonzero temperature 6 # 0 we have to use the stochastic equations
(1.6). The heat-bath temperature noise (1.5) is completely uncorrelated
with internal evolution and is unquenched. Therefore, to get the
corresponding equations of dynamics for the main and residual overlaps,
one has simply to average the equations for § =0 over the linear noise
(1.5), (1.6).7

For example, instead of Egs. (2.9) and (2.17), one gets (f=60"")

1 + o0 2
mi(t = 1):(—2?—06)@}% dx th[ B(x + m?(1=0))] exp <— %)
1 12 140
rP(t=1)=JV(O,1)+rp(t=0)<%> j_ dxchzﬁ(x—[jn"(tzm)
x2
X EXP (— —2—0—(> (6.1)
Similarly [cf. (3.5)] we get
v o< l4omo(1=0) 1 w o
m (t—z)_ail > DD Lwdxthﬂ[m (t=1)+x
o 12 i+ oo B x2
”(5?:) | @ chzﬁ(y—mq<z=0))} exp(‘ 2aD(z=1>>

(6.2)
where [cf. (2.19)]

o IN2 ot pexp(—x*/20) ?
D“"”‘”KE) . d"2ch2ﬁ<x—m4<t=0>>}

q 94— 2\2 pe ﬂexp(—xz/Za)
+2mit=1)m (t—0)<a> LO S T 1= O]

(6.3)

The same procedure applied to Egs. (5.4) and (5.5) gives the well-known
AGS equations for 6 #0.¢

Let us stress here that our derivation of the AGS formula is based on
convincing but sloppy arguments which are far form rigorous. Moreover,
they have to be modified for x> a,.~0.15, where, according to (5.1), one
gets m?=0, which is inconsistent with numerical results predicting
m?(a>a,.)#0; see, e.g, refs. 4 and 9.
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In conclusion, we remark that our results for =1, 2 confirm the
histograms obtained by computer simulations in ref 4. For example, the
histograms for {v¢(z= 1)}, are symmetric despite becoming very broad for
o> o, deviating from sound Gaussian form. The explanation comes from
the explicit formula [cf. (3.4) and (2.14)]

 [m'=0)T

= }Si(r=0)

(6.4)

20\ 12
vi(t=1)=[aD(t=1)1"* #(0, 1) + (;) exp {

Because of Pr{S;(1=0)= +1}=1/2 it is clear that v{(r=1) is a
combination of two symmetrically shifted Gaussians and for small « this
shift is very small due to the exponent in (6.4) (compare with ref. 4, Figs. Sa
and 6a).

For

Evi(t=1)=[aD(t=1)]"*E{ N (0, 1)

+ (25>1/2 éxp {— M} £18,(1=0) (6.5
T 20

the histogram is symmetric (Pr{é?= +1}=1/2) and close to Gaussian
only for a small « (see ref. 4, Fig. 5b). For large o (in ref. 4, « = 0.16), when
the second term in the right-hand side of (6.5) becomes important, the
random variable (6.5) is an asymmetric combination of the two Gaussians.
These asymmetric shifts are due to initial conditions (2.2):

[1+m(t=0)]/2

Pr{¢iS(t=0)= +1} ={[1_m"(t=0)]/2

(6.6)

This asymmetry is accumulating and increases with iterations because
Pr{&!S,(1)= +1} >Pr{l?8,(1)= —1}; see (4.1) and (6.6). Finally, this
produces a double-hill asymmetric histogram like that in ref. 4, Fig. 6b, for
t = 206.
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